Interspike interval distributions of spiking neurons driven by fluctuating inputs.

نویسنده

  • Srdjan Ostojic
چکیده

Interspike interval (ISI) distributions of cortical neurons exhibit a range of different shapes. Wide ISI distributions are believed to stem from a balance of excitatory and inhibitory inputs that leads to a strongly fluctuating total drive. An important question is whether the full range of experimentally observed ISI distributions can be reproduced by modulating this balance. To address this issue, we investigate the shape of the ISI distributions of spiking neuron models receiving fluctuating inputs. Using analytical tools to describe the ISI distribution of a leaky integrate-and-fire (LIF) neuron, we identify three key features: 1) the ISI distribution displays an exponential decay at long ISIs independently of the strength of the fluctuating input; 2) as the amplitude of the input fluctuations is increased, the ISI distribution evolves progressively between three types, a narrow distribution (suprathreshold input), an exponential with an effective refractory period (subthreshold but suprareset input), and a bursting exponential (subreset input); 3) the shape of the ISI distribution is approximately independent of the mean ISI and determined only by the coefficient of variation. Numerical simulations show that these features are not specific to the LIF model but are also present in the ISI distributions of the exponential integrate-and-fire model and a Hodgkin-Huxley-like model. Moreover, we observe that for a fixed mean and coefficient of variation of ISIs, the full ISI distributions of the three models are nearly identical. We conclude that the ISI distributions of spiking neurons in the presence of fluctuating inputs are well described by gamma distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ostojic driven by fluctuating inputs Interspike interval distributions of spiking neurons

Srdjan Ostojic driven by fluctuating inputs Interspike interval distributions of spiking neurons You might find this additional info useful...

متن کامل

Integration of cortical and pallidal inputs in the basal ganglia-recipient thalamus of singing birds.

The basal ganglia-recipient thalamus receives inhibitory inputs from the pallidum and excitatory inputs from cortex, but it is unclear how these inputs interact during behavior. We recorded simultaneously from thalamic neurons and their putative synaptically connected pallidal inputs in singing zebra finches. We find, first, that each pallidal spike produces an extremely brief (∼5 ms) pulse of ...

متن کامل

Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum.

The striatum is composed of GABAergic medium spiny neurons with inhibitory collaterals forming a sparse random asymmetric network and receiving an excitatory glutamatergic cortical projection. Because the inhibitory collaterals are sparse and weak, their role in striatal network dynamics is puzzling. However, here we show by simulation of a striatal inhibitory network model composed of spiking ...

متن کامل

Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons

Spike generation in neurons produces a temporal point process, whose statistics is governed by intrinsic phenomena and the external incoming inputs to be coded. In particular, spike-evoked adaptation currents support a slow temporal process that conditions spiking probability at the present time according to past activity. In this work, we study the statistics of interspike interval correlation...

متن کامل

Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons.

Slow N-Methyl-D-aspartic acid (NMDA) synaptic currents are assumed to strongly contribute to the persistently elevated firing rates observed in prefrontal cortex (PFC) during working memory. During persistent activity, spiking of many neurons is highly irregular. Here we report that highly irregular firing can be induced through a combination of NMDA- and dopamine D1 receptor agonists applied t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 106 1  شماره 

صفحات  -

تاریخ انتشار 2011